Simple Lie Groups
The simple Lie groups form a number of series (classical Lie groups) labelled A, B, C and D. In addition we have the exceptional groups G2 (the automorphism group of the octonions), F4, E6, E7, E8. These last four groups can be viewed as the symmetry groups of projective planes over O, C⊗O, H⊗O and O⊗O respectively, where O is the octonions and the tensor products are over the reals.
The classification of Lie groups corresponds to the classification of root systems and so the exceptional Lie groups correspond to exceptional root systems and exceptional Dynkin diagrams.
Read more about this topic: Exceptional Object
Famous quotes containing the words simple, lie and/or groups:
“It would not be an easy thing to bring the water all the way to the plain. They would have to organize a great coumbite with all the peasants and the water would unite them once again, its fresh breath would clear away the fetid stink of anger and hatred; the brotherly community would be reborn with new plants, the fields filled with to bursting with fruits and grains, the earth gorged with life, simple and fertile.”
—Jacques Roumain (19071945)
“Someone who always has to lie discovers that every one of his lies is true.”
—Elias Canetti (b. 1905)
“Women over fifty already form one of the largest groups in the population structure of the western world. As long as they like themselves, they will not be an oppressed minority. In order to like themselves they must reject trivialization by others of who and what they are. A grown woman should not have to masquerade as a girl in order to remain in the land of the living.”
—Germaine Greer (b. 1939)