Exact Solutions in General Relativity - Existence of Solutions

Existence of Solutions

Given the difficulty of constructing explicit small families of solutions, much less presenting something like a "general" solution to the Einstein field equation, or even a "general" solution to the vacuum field equation, a very reasonable approach is to try to find qualitative properties which hold for all solutions, or at least for all vacuum solutions. One of the most basic questions one can ask is: do solutions exist, and if so, how many?

To get started, we should adopt a suitable initial value formulation of the field equation, which gives two new systems of equations, one giving a constraint on the initial data, and the other giving a procedure for evolving this initial data into a solution. Then, one can prove that solutions exist at least locally, using ideas not terribly dissimilar from those encountered in studying other differential equations.

To get some idea of "how many" solutions we might optimistically expect, we can appeal to Einstein's constraint counting method. A typical conclusion from this style of argument is that a generic vacuum solution to the Einstein field equation can be specified by giving four arbitrary functions of three variables and six arbitrary functions of two variables. These functions specify initial data, from which a unique vacuum solution can be evolved. (In contrast, the Ernst vacuums, the family of all stationary axisymmetric vacuum solutions, are specified by giving just two functions of two variables, which are not even arbitrary, but must satisfy a system of two coupled nonlinear partial differential equations. This may give some idea of how just tiny a typical "large" family of exact solutions really is, in the grand scheme of things.)

However, this crude analysis falls far short of the much more difficult question of global existence of solutions. The global existence results which are known so far turn out to involve another idea.

Read more about this topic:  Exact Solutions In General Relativity

Famous quotes containing the words existence of, existence and/or solutions:

    The Frenchman Jean-Paul ... Sartre I remember now was his last name had a dialectical mind good as a machine for cybernetics, immense in its way, he could peel a nuance like an onion, but he had no sense of evil, the anguish of God, and the possible existence of Satan.
    Norman Mailer (b. 1923)

    Generality is, indeed, an indispensable ingredient of reality; for mere individual existence or actuality without any regularity whatever is a nullity. Chaos is pure nothing.
    Charles Sanders Peirce (1839–1914)

    Every man is in a state of conflict, owing to his attempt to reconcile himself and his relationship with life to his conception of harmony. This conflict makes his soul a battlefield, where the forces that wish this reconciliation fight those that do not and reject the alternative solutions they offer. Works of art are attempts to fight out this conflict in the imaginative world.
    Rebecca West (1892–1983)