Evolution of The Eye - Stages of Eye Evolution

Stages of Eye Evolution

The earliest predecessors of the eye were photoreceptor proteins that sense light, found even in unicellular organisms, called "eyespots". Eyespots can only sense ambient brightness: they can distinguish light from dark, sufficient for photoperiodism and daily synchronization of circadian rhythms. They are insufficient for vision, as they cannot distinguish shapes or determine the direction light is coming from. Eyespots are found in nearly all major animal groups, and are common among unicellular organisms, including euglena. The euglena's eyespot, called a stigma, is located at its anterior end. It is a small splotch of red pigment which shades a collection of light sensitive crystals. Together with the leading flagellum, the eyespot allows the organism to move in response to light, often toward the light to assist in photosynthesis, and to predict day and night, the primary function of circadian rhythms. Visual pigments are located in the brains of more complex organisms, and are thought to have a role in synchronising spawning with lunar cycles. By detecting the subtle changes in night-time illumination, organisms could synchronise the release of sperm and eggs to maximise the probability of fertilisation.

Vision itself relies on a basic biochemistry which is common to all eyes. However, how this biochemical toolkit is used to interpret an organism's environment varies widely: eyes have a wide range of structures and forms, all of which have evolved quite late relative to the underlying proteins and molecules.

At a cellular level, there appear to be two main "designs" of eyes, one possessed by the protostomes (molluscs, annelid worms and arthropods), the other by the deuterostomes (chordates and echinoderms).

The functional unit of the eye is the receptor cell, which contains the opsin proteins and responds to light by initiating a nerve impulse. The light sensitive opsins are borne on a hairy layer, to maximise the surface area. The nature of these "hairs" differs, with two basic forms underlying photoreceptor structure: microvilli and cilia. In the protostomes, they are microvilli: extensions or protrusions of the cellular membrane. But in the deuterostomes, they are derived from cilia, which are separate structures. The actual derivation may be more complicated, as some microvilli contain traces of cilia — but other observations appear to support a fundamental difference between protostomes and deuterostomes. These considerations centre on the response of the cells to light – some use sodium to cause the electric signal that will form a nerve impulse, and others use potassium; further, protostomes on the whole construct a signal by allowing more sodium to pass through their cell walls, whereas deuterostomes allow less through.

This suggests that when the two lineages diverged in the Precambrian, they had only very primitive light receptors, which developed into more complex eyes independently.

Read more about this topic:  Evolution Of The Eye

Famous quotes containing the words stages of, stages, eye and/or evolution:

    The four stages of man are infancy, childhood, adolescence and obsolescence.
    Art Linkletter (20th century)

    But parents can be understanding and accept the more difficult stages as necessary times of growth for the child. Parents can appreciate the fact that these phases are not easy for the child to live through either; rapid growth times are hard on a child. Perhaps it’s a small comfort to know that the harder-to-live-with stages do alternate with the calmer times,so parents can count on getting periodic breaks.
    Saf Lerman (20th century)

    In the Japanese
    tongue of the
    mind’s eye one
    two syllable word
    tells of
    the fringe of rain....
    Denise Levertov (b. 1923)

    What we think of as our sensitivity is only the higher evolution of terror in a poor dumb beast. We suffer for nothing. Our own death wish is our only real tragedy.
    Mario Puzo (b. 1920)