Evolution of Mammals

The evolution of mammals has passed through many stages since the first appearance of their synapsid ancestors in the late Carboniferous period. By the mid-Triassic, there were many synapsid species that looked like mammals. The lineage leading to today's mammals split up in the Jurassic; synapsids from this period include Dryolestes, more closely related to extant placentals and marsupials than to monotremes, as well as Ambondro, more closely related to monotremes. Later on, the eutherian and metatherian lineages separated; the metatherians are the animals more closely related to the marsupials, while the eutherians are those more closely related to the placentals. Since Juramaia, the earliest known eutherian, lived 160 million years ago in the Jurassic, this divergence must have occurred in the same period.

After the Cretaceous–Paleogene extinction event wiped out the non-avian dinosaurs (birds are generally regarded as the surviving dinosaurs) and several other mammalian groups, placental and marsupial mammals diversified into many new forms and ecological niches throughout the Paleogene and Neogene, by the end of which all modern orders had appeared.

Mammals are the only living synapsids. The synapsid lineage became distinct from the sauropsid lineage in the late Carboniferous period, between 320 and 315 million years ago. The sauropsids are today's reptiles and birds along with all the extinct animals more closely related to them than to mammals. (This does not include the mammal-like reptiles, a group more closely related to the mammals.)

Throughout the Permian period, the synapsids included the dominant carnivores and several important herbivores. In the subsequent Triassic period, however, a previously obscure group of sauropsids, the archosaurs, became the dominant vertebrates. The mammaliaforms appeared during this period; their superior sense of smell, backed up by a large brain, facilitated entry into nocturnal niches with less exposure to archosaur predation. The nocturnal lifestyle may have contributed greatly to the development of mammalian traits such as endothermy and hair. Later in the Mesozoic, after theropod dinosaurs replaced rauisuchians as the dominant carnivores, mammals spread into other ecological niches. For example, some became aquatic, some were gliders, and some even fed on juvenile dinosaurs.

Most of the evidence consists of fossils. For many years, fossils of Mesozoic mammals and their immediate ancestors were very rare and fragmentary, but since the mid 1990s there have been many important new finds, especially in China. The relatively new techniques of molecular phylogenetics have also shed light on some aspects of mammalian evolution by estimating the timing of important divergence points for modern species. When used carefully, these techniques often, but not always, agree with the fossil record.

Although mammary glands are a signature feature of modern mammals, little is known about the evolution of lactation. This is because these soft tissues are not often preserved in the fossil record. Most study of the evolution of mammals centers, rather, around the shapes of the teeth, the hardest parts of the tetrapod body. Other much-studied aspects include the evolution of the middle ear bones, erect limb posture, a bony secondary palate, fur and hair, and warm-bloodedness.

Read more about Evolution Of Mammals:  Definition of "mammal", The Ancestry of Mammals, Therapsids, Triassic Takeover, The Earliest Crown Mammals, Expansion of Ecological Niches in The Mesozoic, Evolution of Major Groups of Living Mammals

Famous quotes containing the words evolution of and/or evolution:

    Like Freud, Jung believes that the human mind contains archaic remnants, residues of the long history and evolution of mankind. In the unconscious, primordial “universally human images” lie dormant. Those primordial images are the most ancient, universal and “deep” thoughts of mankind. Since they embody feelings as much as thought, they are properly “thought feelings.” Where Freud postulates a mass psyche, Jung postulates a collective psyche.
    Patrick Mullahy (b. 1912)

    By contrast with history, evolution is an unconscious process. Another, and perhaps a better way of putting it would be to say that evolution is a natural process, history a human one.... Insofar as we treat man as a part of nature—for instance in a biological survey of evolution—we are precisely not treating him as a historical being. As a historically developing being, he is set over against nature, both as a knower and as a doer.
    Owen Barfield (b. 1898)