Shock Waves
The Euler equations are nonlinear hyperbolic equations and their general solutions are waves. Much like the familiar oceanic waves, waves described by the Euler Equations 'break' and so-called shock waves are formed; this is a nonlinear effect and represents the solution becoming multi-valued. Physically this represents a breakdown of the assumptions that led to the formulation of the differential equations, and to extract further information from the equations we must go back to the more fundamental integral form. Then, weak solutions are formulated by working in 'jumps' (discontinuities) into the flow quantities – density, velocity, pressure, entropy – using the Rankine–Hugoniot shock conditions. Physical quantities are rarely discontinuous; in real flows, these discontinuities are smoothed out by viscosity. (See Navier–Stokes equations)
Shock propagation is studied – among many other fields – in aerodynamics and rocket propulsion, where sufficiently fast flows occur.
Read more about this topic: Euler Equations (fluid Dynamics)
Famous quotes containing the words shock and/or waves:
“It is not only their own need to mother that takes some women by surprise; there is also the shock of discovering the complexity of alternative child-care arrangements that have been made to sound so simple. Those for whom the intended solution is equal parenting have found that some parents are more equal than others.”
—Elaine Heffner (20th century)
“His bold head
Bove the contentious waves he kept, and oared
Himself with his good arms in lusty stroke
To the shore.”
—William Shakespeare (15641616)