Euclid Number

In mathematics, Euclid numbers are integers of the form En = pn# + 1, where pn# is the nth primorial, i.e. the product of the first n primes. They are named after the ancient Greek mathematician Euclid.

It is sometimes falsely stated that Euclid's celebrated proof of the infinitude of prime numbers relied on these numbers. In fact, Euclid did not begin with the assumption that the set of all primes is finite. Rather, he said: consider any finite set of primes (he did not assume it contained just the first n primes, e.g. it could have been {3, 41, 53}) and reasoned from there to the conclusion that at least one prime exists that is not in that set.

The first few Euclid numbers are 3, 7, 31, 211, 2311, 30031, 510511 (sequence A006862 in OEIS).

List of unsolved problems in mathematics
Are there an infinite number of prime Euclid numbers?

It is not known whether or not there are an infinite number of prime Euclid numbers.

E6 = 13# + 1 = 30031 = 59 x 509 is the first composite Euclid number, demonstrating that not all Euclid numbers are prime.
A Euclid number can not be a square. This is because Euclid numbers are always congruent to 3 mod 4.

For all n ≥ 3 the last digit of En is 1, since En − 1 is divisible by 2 and 5.

Famous quotes containing the word number:

    Not too many years ago, a child’s experience was limited by how far he or she could ride a bicycle or by the physical boundaries that parents set. Today ... the real boundaries of a child’s life are set more by the number of available cable channels and videotapes, by the simulated reality of videogames, by the number of megabytes of memory in the home computer. Now kids can go anywhere, as long as they stay inside the electronic bubble.
    Richard Louv (20th century)