Maximum-likelihood Estimation For The Multivariate Normal Distribution
A random vector X ∈ Rp (a p×1 "column vector") has a multivariate normal distribution with a nonsingular covariance matrix Σ precisely if Σ ∈ Rp × p is a positive-definite matrix and the probability density function of X is
where μ ∈ Rp×1 is the expected value of X. The covariance matrix Σ is the multidimensional analog of what in one dimension would be the variance, and normalizes the density so that it integrates to 1.
Suppose now that X1, ..., Xn are independent and identically distributed samples from the distribution above. Based on the observed values x1, ..., xn of this sample, we wish to estimate Σ.
Read more about this topic: Estimation Of Covariance Matrices
Famous quotes containing the words estimation, normal and/or distribution:
“A higher class, in the estimation and love of this city- building, market-going race of mankind, are the poets, who, from the intellectual kingdom, feed the thought and imagination with ideas and pictures which raise men out of the world of corn and money, and console them for the short-comings of the day, and the meanness of labor and traffic.”
—Ralph Waldo Emerson (18031882)
“Love brings to light the lofty and hidden characteristics of the loverwhat is rare and exceptional in him: to that extent it can easily be deceptive with respect to what is normal in him.”
—Friedrich Nietzsche (18441900)
“In this distribution of functions, the scholar is the delegated intellect. In the right state, he is, Man Thinking. In the degenerate state, when the victim of society, he tends to become a mere thinker, or, still worse, the parrot of other mens thinking.”
—Ralph Waldo Emerson (18031882)