Essential Dimension

In mathematics, essential dimension is an invariant defined for certain algebraic structures such as algebraic groups and quadratic forms. It was introduced by J. Buhler and Z. Reichstein and in its most generality defined by A. Merkurjev.

Basically, essential dimension measures the complexity of algebraic structures via their fields of definition. For example, a quadratic form q : V → K over a field K, where V is a K-vector space, is said to be defined over a subfield L of K if there exists a K-basis e1,...,en of V such that q can be expressed in the form with all coefficients aij belonging to L. If K has characteristic different from 2, every quadratic form is diagonalizable. Therefore q has a field of definition generated by n elements. Technically, one always works over a (fixed) base field k and the fields K and L in consideration are supposed to contain k. The essential dimension of q is then defined as the least transcendence degree over k of a subfield L of K over which q is defined.

Read more about Essential Dimension:  Formal Definition, Examples, Known Results

Famous quotes containing the words essential and/or dimension:

    The essential is to excite the spectators. If that means playing Hamlet on a flying trapeze or in an aquarium, you do it.
    Orson Welles (1915–1984)

    God cannot be seen: he is too bright for sight; nor grasped: he is too pure for touch; nor measured: for he is beyond all sense, infinite, measureless, his dimension known to himself alone.
    Marcus Minucius Felix (2nd or 3rd cen. A.D.)