Essential Dimension

In mathematics, essential dimension is an invariant defined for certain algebraic structures such as algebraic groups and quadratic forms. It was introduced by J. Buhler and Z. Reichstein and in its most generality defined by A. Merkurjev.

Basically, essential dimension measures the complexity of algebraic structures via their fields of definition. For example, a quadratic form q : V → K over a field K, where V is a K-vector space, is said to be defined over a subfield L of K if there exists a K-basis e1,...,en of V such that q can be expressed in the form with all coefficients aij belonging to L. If K has characteristic different from 2, every quadratic form is diagonalizable. Therefore q has a field of definition generated by n elements. Technically, one always works over a (fixed) base field k and the fields K and L in consideration are supposed to contain k. The essential dimension of q is then defined as the least transcendence degree over k of a subfield L of K over which q is defined.

Read more about Essential Dimension:  Formal Definition, Examples, Known Results

Famous quotes containing the words essential and/or dimension:

    Affection, indulgence, and humor alike are powerless against the instinct of children to rebel. It is essential to their minds and their wills as exercise is to their bodies. If they have no reasons, they will invent them, like nations bound on war. It is hard to imagine families limp enough always to be at peace. Wherever there is character there will be conflict. The best that children and parents can hope for is that the wounds of their conflict may not be too deep or too lasting.
    —New York State Division of Youth Newsletter (20th century)

    Authority is the spiritual dimension of power because it depends upon faith in a system of meaning that decrees the necessity of the hierarchical order and so provides for the unity of imperative control.
    Shoshana Zuboff (b. 1951)