Calculating An Escape Velocity
To expand upon the derivation given in the Overview,
where is the barycentric escape velocity, G is the gravitational constant, M is the mass of the body being escaped from, r is the distance between the center of the body and the point at which escape velocity is being calculated, g is the gravitational acceleration at that distance, and μ is the standard gravitational parameter.
The escape velocity at a given height is times the speed in a circular orbit at the same height, (compare this with equation (14) in circular motion). This corresponds to the fact that the potential energy with respect to infinity of an object in such an orbit is minus two times its kinetic energy, while to escape the sum of potential and kinetic energy needs to be at least zero. The velocity corresponding to the circular orbit is sometimes called the first cosmic velocity, whereas in this context the escape velocity is referred to as the second cosmic velocity"
For a body with a spherically-symmetric distribution of mass, the barycentric escape velocity from the surface (in m/s) is approximately 2.364×10−5 m1.5kg−0.5s−1 times the radius r (in meters) times the square root of the average density ρ (in kg/m³), or:
Read more about this topic: Escape Velocity
Famous quotes containing the words calculating and/or escape:
“[The] elderly and timid single gentleman in Paris ... never drove down the Champs Elysees without expecting an accident, and commonly witnessing one; or found himself in the neighborhood of an official without calculating the chances of a bomb. So long as the rates of progress held good, these bombs would double in force and number every ten years.”
—Henry Brooks Adams (18381918)
“The great fact in life, the always possible escape from dullness, was the lake. The sun rose out of it, the day began there; it was like an open door that nobody could shut. The land and all its dreariness could never close in on you. You had only to look at the lake, and you knew you would soon be free.”
—Willa Cather (18731947)