Erosions On Complete Lattices
Complete lattices are partially ordered sets, where every subset has an infimum and a supremum. In particular, it contains a least element and a greatest element (also denoted "universe").
Let be a complete lattice, with infimum and minimum symbolized by and, respectively. Its universe and least element are symbolized by U and, respectively. Moreover, let be a collection of elements from L.
An erosion in is any operator that distributes over the infimum, and preserves the universe. I.e.:
- ,
- .
Read more about this topic: Erosion (morphology)
Famous quotes containing the word complete:
“Tis very certain that each man carries in his eye the exact indication of his rank in the immense scale of men, and we are always learning to read it. A complete man should need no auxiliaries to his personal presence.”
—Ralph Waldo Emerson (18031882)