Erlangen Program - The Problems of Nineteenth Century Geometry

The Problems of Nineteenth Century Geometry

Is there one 'geometry' or many? Since Euclid, geometry had meant the geometry of Euclidean space of two dimensions (plane geometry) or of three dimensions (solid geometry). In the first half of the nineteenth century there had been several developments complicating the picture. Mathematical applications required geometry of four or more dimensions; the close scrutiny of the foundations of the traditional Euclidean geometry had revealed the independence of the parallel postulate from the others, and non-Euclidean geometry had been born. Klein proposed an idea that all these new geometries are just special cases of the projective geometry, as already developed by Poncelet, Möbius, Cayley and others. Klein also strongly suggested to mathematical physicists that even a moderate cultivation of the projective purview might bring substantial benefits to them.

With every geometry, Klein associated an underlying group of symmetries. The hierarchy of geometries is thus mathematically represented as a hierarchy of these groups, and hierarchy of their invariants. For example, lengths, angles and areas are preserved with respect to the Euclidean group of symmetries, while only the incidence structure and the cross-ratio are preserved under the most general projective transformations. A concept of parallelism, which is preserved in affine geometry, is not meaningful in projective geometry. Then, by abstracting the underlying groups of symmetries from the geometries, the relationships between them can be re-established at the group level. Since the group of affine geometry is a subgroup of the group of projective geometry, any notion invariant in projective geometry is a priori meaningful in affine geometry; but not the other way round. If you add required symmetries, you have a more powerful theory but fewer concepts and theorems (which will be deeper and more general).

Read more about this topic:  Erlangen Program

Famous quotes containing the words problems, nineteenth and/or geometry:

    I believe that if we are to survive as a planet, we must teach this next generation to handle their own conflicts assertively and nonviolently. If in their early years our children learn to listen to all sides of the story, use their heads and then their mouths, and come up with a plan and share, then, when they become our leaders, and some of them will, they will have the tools to handle global problems and conflict.
    Barbara Coloroso (20th century)

    Detachment is the prerogative of an elite; and as the dandy is the nineteenth century’s surrogate for the aristocrat in matters of culture, so Camp is the modern dandyism. Camp is the answer to the problem: how to be a dandy in the age of mass culture.
    Susan Sontag (b. 1933)

    ... geometry became a symbol for human relations, except that it was better, because in geometry things never go bad. If certain things occur, if certain lines meet, an angle is born. You cannot fail. It’s not going to fail; it is eternal. I found in rules of mathematics a peace and a trust that I could not place in human beings. This sublimation was total and remained total. Thus, I’m able to avoid or manipulate or process pain.
    Louise Bourgeois (b. 1911)