The Problems of Nineteenth Century Geometry
Is there one 'geometry' or many? Since Euclid, geometry had meant the geometry of Euclidean space of two dimensions (plane geometry) or of three dimensions (solid geometry). In the first half of the nineteenth century there had been several developments complicating the picture. Mathematical applications required geometry of four or more dimensions; the close scrutiny of the foundations of the traditional Euclidean geometry had revealed the independence of the parallel postulate from the others, and non-Euclidean geometry had been born. Klein proposed an idea that all these new geometries are just special cases of the projective geometry, as already developed by Poncelet, Möbius, Cayley and others. Klein also strongly suggested to mathematical physicists that even a moderate cultivation of the projective purview might bring substantial benefits to them.
With every geometry, Klein associated an underlying group of symmetries. The hierarchy of geometries is thus mathematically represented as a hierarchy of these groups, and hierarchy of their invariants. For example, lengths, angles and areas are preserved with respect to the Euclidean group of symmetries, while only the incidence structure and the cross-ratio are preserved under the most general projective transformations. A concept of parallelism, which is preserved in affine geometry, is not meaningful in projective geometry. Then, by abstracting the underlying groups of symmetries from the geometries, the relationships between them can be re-established at the group level. Since the group of affine geometry is a subgroup of the group of projective geometry, any notion invariant in projective geometry is a priori meaningful in affine geometry; but not the other way round. If you add required symmetries, you have a more powerful theory but fewer concepts and theorems (which will be deeper and more general).
Read more about this topic: Erlangen Program
Famous quotes containing the words problems, nineteenth, century and/or geometry:
“What we know, is a point to what we do not know. Open any recent journal of science, and weigh the problems suggested concerning Light, Heat, Electricity, Magnetism, Physiology, Geology, and judge whether the interest of natural science is likely to be soon exhausted.”
—Ralph Waldo Emerson (18031882)
“Posteritythe forlorn child of nineteenth century optimismgrows ever harder to conceive.”
—Mason Cooley (b. 1927)
“For a man wins nothing better than a good wife, and then again nothing deadlier than a bad one.”
—Hesiod (c. 8th century B.C.)
“... geometry became a symbol for human relations, except that it was better, because in geometry things never go bad. If certain things occur, if certain lines meet, an angle is born. You cannot fail. Its not going to fail; it is eternal. I found in rules of mathematics a peace and a trust that I could not place in human beings. This sublimation was total and remained total. Thus, Im able to avoid or manipulate or process pain.”
—Louise Bourgeois (b. 1911)