Equivalence Relation - Well-definedness Under An Equivalence Relation

Well-definedness Under An Equivalence Relation

If ~ is an equivalence relation on X, and P(x) is a property of elements of X, such that whenever x ~ y, P(x) is true if P(y) is true, then the property P is said to be well-defined or a class invariant under the relation ~.

A frequent particular case occurs when f is a function from X to another set Y; if x1 ~ x2 implies f(x1) = f(x2) then f is said to be a morphism for ~, a class invariant under ~, or simply invariant under ~. This occurs, e.g. in the character theory of finite groups. The latter case with the function f can be expressed by a commutative triangle. See also invariant. Some authors use "compatible with ~" or just "respects ~" instead of "invariant under ~".

More generally, a function may map equivalent arguments (under an equivalence relation ~A) to equivalent values (under an equivalence relation ~B). Such a function is known as a morphism from ~A to ~B.

Read more about this topic:  Equivalence Relation

Famous quotes containing the word relation:

    In relation to God, we are like a thief who has burgled the house of a kindly householder and been allowed to keep some of the gold. From the point of view of the lawful owner this gold is a gift; From the point of view of the burglar it is a theft. He must go and give it back. It is the same with our existence. We have stolen a little of God’s being to make it ours. God has made us a gift of it. But we have stolen it. We must return it.
    Simone Weil (1909–1943)