Definition
Formally, given two categories C and D, an equivalence of categories consists of a functor F : C → D, a functor G : D → C, and two natural isomorphisms ε: FG→ID and η : IC→GF. Here FG: D→D and GF: C→C, denote the respective compositions of F and G, and IC: C→C and ID: D→D denote the identity functors on C and D, assigning each object and morphism to itself. If F and G are contravariant functors one speaks of a duality of categories instead.
One often does not specify all the above data. For instance, we say that the categories C and D are equivalent (respectively dually equivalent) if there exists an equivalence (respectively duality) between them. Furthermore, we say that F "is" an equivalence of categories if an inverse functor G and natural isomorphisms as above exist. Note however that knowledge of F is usually not enough to reconstruct G and the natural isomorphisms: there may be many choices (see example below).
Read more about this topic: Equivalence Of Categories
Famous quotes containing the word definition:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)