Equilibrium Chemistry - Partition

Partition

When a solution of a substance in one solvent is brought into equilibrium with a second solvent that is immiscible with the first solvent, the dissolved substance may be partitioned between the two solvents. The ratio of concentrations in the two solvents is known as a partition coefficient or distribution coefficient. The partition coefficient is defined as the ratio of the analytical concentrations of the solute in the two phases. By convention the value is reported in logarithmic form.

The partition coefficient is defined at a specified temperature and, if applicable, pH of the aqueous phase. Partition coefficients are very important in pharmacology because they determine the extent to which a substance can pass from the blood (an aqueous solution) through a cell wall which is like an organic solvent. They are usually measured using water and octanol as the two solvents. Many pharmaceutical compounds are weak acids or weak bases. Such a compound may exist with a different extent of protonation depending on pH and the acid dissociation constant. Because the organic phase has a low dielectric constant the species with no electrical charge will be the most likely one to pass from the aqueous phase to the organic phase. Even at pH 7-7.2, the range of biological pH values, the aqueous phase may support an equilibrium between more than one protonated form. Log p is determined from the analytical concentration of the substance in the aqueous phase, that is, the sum of the concentration of the different species in equilibrium.

Solvent extraction is used extensively in separation and purification processes. In its simplest form a reaction is performed in an organic solvent and unwanted by-products are removed by extraction into water at a particular pH.

A metal ion may be extracted from an aqueous phase into an organic phase in which the salt is not soluble, by adding a ligand. The ligand, La-, forms a complex with the metal ion, Mb+, (b-ax)+ which has a strongly hydrophobic outer surface. If the complex has no electrical charge it will be extracted relatively easily into the organic phase. If the complex is charged, it is extracted as an ion pair. The additional ligand is not always required. For example, uranyl nitrate, UO2(NO3)2, is soluble in diethyl ether because the solvent itself acts as a ligand. This property was used in the past for separating uranium from other metals whose salts are not soluble in ether. Currently extraction into kerosene is preferred, using a ligand such as tri-n-butyl phosphate, TBP. In the PUREX process, which is commonly used in nuclear reprocessing, uranium(VI) is extracted from strong nitric acid as the electrically neutral complex . The strong nitric acid provides a high concentration of nitrate ions which pushes the equilibrium in favour of the weak nitrato complex. Uranium is recovered by back-extraction (stripping) into weak nitric acid. Plutonium(IV) forms a similar complex, and the plutonium in this complex can be reduced to separate it from uranium.

Another important application of solvent extraction is in the separation of the lanthanoids. This process also uses TBP and the complexes are extracted into kerosene. Separation is achieved because the stability constant for the formation of the TBP complex increases as the size of the lanthanoid ion decreases.

An instance of ion-pair extraction is in the use of a ligand to enable oxidation by potassium permanganate, KMnO4, in an organic solvent. KMnO4 is not soluble in organic solvents. When a ligand, such as a crown ether is added to an aqueous solution of KMnO4, it forms a hydrophobic complex with the potassium cation which allows the uncharged ion-pair, {+-} to be extracted into the organic solvent. See also: phase-transfer catalysis.

More complex partitioning problems (i.e. 3 or more phases present) can sometimes be handled with a fugacity capacity approach.

Read more about this topic:  Equilibrium Chemistry