Equation Solving - Solution Sets

Solution Sets

If the solution set is empty, then there are no xi such that the equation

ƒ (x1,...,xn) = c,

in which c is a given constant, becomes true.

For example, let us examine a classic one-variable case. Using the squaring function on the integers, that is, the function ƒ whose domain are the integers (the whole numbers) defined by:

ƒ (x) = x2,

consider the equation

ƒ (x) = 2.

Its solution set is {}, the empty set, since 2 is not the square of an integer, so no integer solves this equation. However note that in attempting to find solutions for this equation, if we modify the function's definition – more specifically, the function's domain, we can find solutions to this equation. So, if we were instead to define that the domain of ƒ consists of the real numbers, the equation above has two solutions, and its solution set is

{√2, −√2}.

We have already seen that certain solutions sets can describe surfaces. For example, in studying elementary mathematics, one knows that the solution set of an equation in the form ax + by = c with a, b, and c real-valued constants, with a and b not both equal to zero, forms a line in the vector space R2. However, it may not always be easy to graphically depict solutions sets – for example, the solution set to an equation in the form ax + by + cz + dw = k (with a, b, c, d, and k real-valued constants) is a hyperplane.

Read more about this topic:  Equation Solving

Famous quotes containing the words solution and/or sets:

    Coming out, all the way out, is offered more and more as the political solution to our oppression. The argument goes that, if people could see just how many of us there are, some in very important places, the negative stereotype would vanish overnight. ...It is far more realistic to suppose that, if the tenth of the population that is gay became visible tomorrow, the panic of the majority of people would inspire repressive legislation of a sort that would shock even the pessimists among us.
    Jane Rule (b. 1931)

    It is odd but agitation or contest of any kind gives a rebound to my spirits and sets me up for a time.
    George Gordon Noel Byron (1788–1824)