Equality (mathematics) - Some Basic Logical Properties of Equality

Some Basic Logical Properties of Equality

The substitution property states:

  • For any quantities a and b and any expression F(x), if a = b, then F(a) = F(b) (if either side makes sense, i.e. is well-formed).

In first-order logic, this is a schema, since we can't quantify over expressions like F (which would be a functional predicate).

Some specific examples of this are:

  • For any real numbers a, b, and c, if a = b, then a + c = b + c (here F(x) is x + c);
  • For any real numbers a, b, and c, if a = b, then ac = bc (here F(x) is xc);
  • For any real numbers a, b, and c, if a = b, then ac = bc (here F(x) is xc);
  • For any real numbers a, b, and c, if a = b and c is not zero, then a/c = b/c (here F(x) is x/c).

The reflexive property states:

For any quantity a, a = a.

This property is generally used in mathematical proofs as an intermediate step.

The symmetric property states:

  • For any quantities a and b, if a = b, then b = a.

The transitive property states:

  • For any quantities a, b, and c, if a = b and b = c, then a = c.

The binary relation "is approximately equal" between real numbers or other things, even if more precisely defined, is not transitive (it may seem so at first sight, but many small differences can add up to something big). However, equality almost everywhere is transitive.

Although the symmetric and transitive properties are often seen as fundamental, they can be proved, if the substitution and reflexive properties are assumed instead.

Read more about this topic:  Equality (mathematics)

Famous quotes containing the words basic, logical, properties and/or equality:

    Man has lost the basic skill of the ape, the ability to scratch its back. Which gave it extraordinary independence, and the liberty to associate for reasons other than the need for mutual back-scratching.
    Jean Baudrillard (b. 1929)

    The contention that a standing army and navy is the best security of peace is about as logical as the claim that the most peaceful citizen is he who goes about heavily armed. The experience of every-day life fully proves that the armed individual is invariably anxious to try his strength. The same is historically true of governments. Really peaceful countries do not waste life and energy in war preparations, with the result that peace is maintained.
    Emma Goldman (1869–1940)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    When a bachelor of philosophy from the Antilles refuses to apply for certification as a teacher on the grounds of his color I say that philosophy has never saved anyone. When someone else strives and strains to prove to me that black men are as intelligent as white men I say that intelligence has never saved anyone: and that is true, for, if philosophy and intelligence are invoked to proclaim the equality of men, they have also been employed to justify the extermination of men.
    Frantz Fanon (1925–1961)