Entropy (order and Disorder) - Overview

Overview

To highlight the fact that order and disorder are commonly understood to be measured in terms of entropy, below are current science encyclopedia and science dictionary definitions of entropy:

  • Entropy – a measure of the unavailability of a system’s energy to do work; also a measure of disorder; the higher the entropy the greater the disorder.
  • Entropy – a measure of disorder; the higher the entropy the greater the disorder.
  • Entropy – in thermodynamics, a parameter representing the state of disorder of a system at the atomic, ionic, or molecular level; the greater the disorder the higher the entropy.
  • Entropy – a measure of disorder in the universe or of the availability of the energy in a system to do work.

Entropy and disorder also have associations with equilibrium. Technically, entropy, from this perspective, is defined as a thermodynamic property which serves as a measure of how close a system is to equilibrium — that is, to perfect internal disorder. Likewise, the value of the entropy of a distribution of atoms and molecules in a thermodynamic system is a measure of the disorder in the arrangements of its particles. In a stretched out piece of rubber, for example, the arrangement of the molecules of its structure has an “ordered” distribution and has zero entropy, while the “disordered” kinky distribution of the atoms and molecules in the rubber in the non-stretched state has positive entropy. Similarly, in a gas, the order is perfect and the measure of entropy of the system has its lowest value when all the molecules are in one place, whereas when more points are occupied the gas is all the more disorderly and the measure of the entropy of the system has its largest value.

In systems ecology, as another example, the entropy of a collection of items comprising a system is defined as a measure of their disorder or equivalently the relative likelihood of the instantaneous configuration of the items. Moreover, according to theoretical ecologist and chemical engineer Robert Ulanowicz, “that entropy might provide a quantification of the heretofore subjective notion of disorder has spawned innumerable scientific and philosophical narratives.” In particular, many biologists have taken to speaking in terms of the entropy of an organism, or about its antonym negentropy, as a measure of the structural order within an organism.

The mathematical basis with respect to the association entropy has with order and disorder began, essentially, with the famous Boltzmann formula, S = k ln W, which relates entropy S to the number of possible states W in which a system can be found. As an example, consider a box that is divided into two sections. What is the probability that a certain number, or all of the particles, will be found in one section versus the other when the particles are randomly allocated to different places within the box? If you only have one particle, then that system of one particle can subsist in two states, one side of the box versus the other. If you have more than one particle, or define states as being further locational subdivisions of the box, the entropy is lower because the number of states is greater. The relationship between entropy, order, and disorder in the Boltzmann equation is so clear among physicists that according to the views of thermodynamic ecologists Sven Jorgensen and Yuri Svirezhev, “it is obvious that entropy is a measure of order or, most likely, disorder in the system.” In this direction, the second law of thermodynamics, as famously enunciated by Rudolf Clausius in 1865, states that:

The entropy of the universe tends to a maximum.

Thus, if entropy is associated with disorder and if the entropy of the universe is headed towards maximal entropy, then many are often puzzled as to the nature of the "ordering" process and operation of evolution in relation to Clausius' most famous version of the second law, which states that the universe is headed towards maximal “disorder”. In the recent 2003 book SYNC – the Emerging Science of Spontaneous Order by Steven Strogatz, for example, we find “Scientists have often been baffled by the existence of spontaneous order in the universe. The laws of thermodynamics seem to dictate the opposite, that nature should inexorably degenerate toward a state of greater disorder, greater entropy. Yet all around us we see magnificent structures—galaxies, cells, ecosystems, human beings—that have all somehow managed to assemble themselves.”

The common argument used to explain this is that, locally, entropy can be lowered by external action, e.g. solar heating action, and that this applies to machines, such as a refrigerator, where the entropy in the cold chamber is being reduced, to growing crystals, and to living organisms. This local increase in order is, however, only possible at the expense of an entropy increase in the surroundings; here more disorder must be created. The conditioner of this statement suffices that living systems are open systems in which both heat, mass, and or work may transfer into or out of the system. Unlike temperature, the putative entropy of a living system would drastically change if the organism were thermodynamically isolated. If an organism was in this type of “isolated” situation, its entropy would increase markedly as the once-living components of the organism decayed to an unrecognizable mass.

Read more about this topic:  Entropy (order And Disorder)