Entropy (order and Disorder) - Adiabatic Demagnetization

Adiabatic Demagnetization

In the quest for ultra-cold temperatures, a temperature lowering technique called adiabatic demagnetization is used, where atomic entropy considerations are utilized which can be described in order-disorder terms. In this process, a sample of solid such as chrome-alum salt, whose molecules are equivalent to tiny magnets, is inside an insulated enclosure cooled to a low temperature, typically 2 or 4 kelvins, with a strong magnetic field being applied to the container using a powerful external magnet, so that the tiny molecular magnets are aligned forming a well-ordered "initial" state at that low temperature. This magnetic alignment means that the magnetic energy of each molecule is minimal. The external magnetic field is then reduced, a removal that is considered to be closely reversible. Following this reduction, the atomic magnets then assume random less-ordered orientations, owing to thermal agitations, in the "final" state:

The "disorder" and hence the entropy associated with the change in the atomic alignments has clearly increased. In terms of energy flow, the movement from a magnetically aligned state requires energy from the thermal motion of the molecules, converting thermal energy into magnetic energy. Yet, according to the second law of thermodynamics, because no heat can enter or leave the container, due to its adiabatic insulation, the system should exhibit no change in entropy, i.e. ΔS = 0. The increase in disorder, however, associated with the randomizing directions of the atomic magnets represents an entropy increase? To compensate for this, the disorder (entropy) associated with the temperature of the specimen must decrease by the same amount. The temperature thus falls as a result of this process of thermal energy being converted into magnetic energy. If the magnetic field is then increased, the temperature rises and the magnetic salt has to be cooled again using a cold material such as liquid helium.

Read more about this topic:  Entropy (order And Disorder)