Empirical Measure - Definition

Let be a sequence of independent identically distributed random variables with values in the state space S with probability measure P.

Definition

The empirical measure is defined for measurable subsets of S and given by
where is the indicator function and is the Dirac measure.

For a fixed measurable set A, nPn(A) is a binomial random variable with mean nP(A) and variance nP(A)(1 − P(A)). In particular, is an unbiased estimator of P(A).

Definition

is the empirical measure indexed by, a collection of measurable subsets of S.

To generalize this notion further, observe that the empirical measure Pn maps measurable functions to their empirical mean,

In particular, the empirical measure of A is simply the empirical mean of the indicator function, .

For a fixed measurable function f, is a random variable with mean and variance .

By the strong law of large numbers, converges to P(A) almost surely for fixed A. Similarly converges to almost surely for a fixed measurable function f. The problem of uniform convergence of to P was open until Vapnik and Chervonenkis solved it in 1968.

If the class (or ) is Glivenko–Cantelli with respect to P then converges to P uniformly over (or ). In other words, with probability 1 we have

Read more about this topic:  Empirical Measure

Famous quotes containing the word definition:

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)