Properties
Finite embedding problems characterize profinite groups. The following theorem gives an illustration for this principle.
Theorem. Let F be a countably (topologically) generated profinite group. Then
- F is projective if and only if any finite embedding problem for F is solvable.
- F is free of countable rank if and only if any finite embedding problem for F is properly solvable.
Read more about this topic: Embedding Problem
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)