Definition
If E0, E1, ..., Ek are vector bundles on a smooth manifold M (usually taken to be compact), then a differential complex is a sequence
of differential operators between the sheaves of sections of the Ei such that Pi+1 o Pi=0. A differential complex is elliptic if the sequence of symbols
is exact outside of the zero section. Here π is the projection of the cotangent bundle T*M to M, and π* is the pullback of a vector bundle.
Read more about this topic: Elliptic Complex
Famous quotes containing the word definition:
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)