Electronic Band Structure - Theory of Band Structures in Crystals

Theory of Band Structures in Crystals

The ansatz is the special case of electron waves in a periodic crystal lattice using Bloch waves as treated generally in the dynamical theory of diffraction. Every crystal is a periodic structure which can be characterized by a Bravais lattice, and for each Bravais lattice we can determine the reciprocal lattice, which encapsulates the periodicity in a set of three reciprocal lattice vectors (b1,b2,b3). Now, any periodic potential V(r) which shares the same periodicity as the direct lattice can be expanded out as a Fourier series whose only non-vanishing components are those associated with the reciprocal lattice vectors. So the expansion can be written as:

where K = m1b1 + m2b2 + m3b3 for any set of integers (m1,m2,m3).

From this theory, an attempt can be made to predict the band structure of a particular material, however most ab initio methods for electronic structure calculations fail to predict the observed band gap.

Read more about this topic:  Electronic Band Structure

Famous quotes containing the words theory of, theory, band, structures and/or crystals:

    Hygiene is the corruption of medicine by morality. It is impossible to find a hygienest who does not debase his theory of the healthful with a theory of the virtuous.... The true aim of medicine is not to make men virtuous; it is to safeguard and rescue them from the consequences of their vices.
    —H.L. (Henry Lewis)

    Don’t confuse hypothesis and theory. The former is a possible explanation; the latter, the correct one. The establishment of theory is the very purpose of science.
    Martin H. Fischer (1879–1962)

    Citizen’s Band radio renders one accessible to a wide variety of people from all walks of life. It should not be forgotten that all walks of life include conceptual artists, dry cleaners, and living poets.
    Fran Lebowitz (b. 1950)

    The American who has been confined, in his own country, to the sight of buildings designed after foreign models, is surprised on entering York Minster or St. Peter’s at Rome, by the feeling that these structures are imitations also,—faint copies of an invisible archetype.
    Ralph Waldo Emerson (1803–1882)

    It is clear that everybody interested in science must be interested in world 3 objects. A physical scientist, to start with, may be interested mainly in world 1 objects—say crystals and X-rays. But very soon he must realize how much depends on our interpretation of the facts, that is, on our theories, and so on world 3 objects. Similarly, a historian of science, or a philosopher interested in science must be largely a student of world 3 objects.
    Karl Popper (1902–1994)