Electromagnetism - Overview

Overview

The electromagnetic force is one of the four known fundamental forces. The other fundamental forces are: the strong nuclear force, which binds quarks to form nucleons, and binds nucleons to form nuclei, the weak nuclear force, which causes certain forms of radioactive decay, and the gravitational force. All other forces (e.g., friction) are ultimately derived from these fundamental forces and momentum carried by the movement of particles.

The electromagnetic force is the one responsible for practically all the phenomena one encounters in daily life above the nuclear scale, with the exception of gravity. Roughly speaking, all the forces involved in interactions between atoms can be explained by the electromagnetic force acting on the electrically charged atomic nuclei and electrons inside and around the atoms, together with how these particles carry momentum by their movement. This includes the forces we experience in "pushing" or "pulling" ordinary material objects, which come from the intermolecular forces between the individual molecules in our bodies and those in the objects. It also includes all forms of chemical phenomena.

A necessary part of understanding the intra-atomic to intermolecular forces is the effective force generated by the momentum of the electrons' movement, and that electrons move between interacting atoms, carrying momentum with them. As a collection of electrons becomes more confined, their minimum momentum necessarily increases due to the Pauli exclusion principle. The behaviour of matter at the molecular scale including its density is determined by the balance between the electromagnetic force and the force generated by the exchange of momentum carried by the electrons themselves.

Read more about this topic:  Electromagnetism