Electromagnetic Tensor - Definition

Definition

The electromagnetic tensor can be defined using the electromagnetic four-potential:

and its covariant form is found by multiplying by the Minkowski metric η of signature (+,−,−,−) :

where A is the vector potential, ϕ is the scalar potential and c is the speed of light.

The Electric and magnetic fields can be expressed in terms of A and ϕ by:

By definition, the electromagnetic tensor is the exterior derivative of the differential 1-form :

therefore F is a differential 2-form on spacetime. In an inertial frame, the matrices of F read:

F^{\mu\nu} = \begin{bmatrix}
0 & -E_x/c & -E_y/c & -E_z/c \\
E_x/c & 0 & -B_z & B_y \\
E_y/c & B_z & 0 & -B_x \\
E_z/c & -B_y & B_x & 0
\end{bmatrix}

and by lowering indices

F_{\mu\nu} = \begin{bmatrix}
0 & E_x/c & E_y/c & E_z/c \\
-E_x/c & 0 & -B_z & B_y \\
-E_y/c & B_z & 0 & -B_x \\
-E_z/c & -B_y & B_x & 0
\end{bmatrix}

Read more about this topic:  Electromagnetic Tensor

Famous quotes containing the word definition:

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)