Electromagnetic Tensor - Definition

Definition

The electromagnetic tensor can be defined using the electromagnetic four-potential:

and its covariant form is found by multiplying by the Minkowski metric η of signature (+,−,−,−) :

where A is the vector potential, ϕ is the scalar potential and c is the speed of light.

The Electric and magnetic fields can be expressed in terms of A and ϕ by:

By definition, the electromagnetic tensor is the exterior derivative of the differential 1-form :

therefore F is a differential 2-form on spacetime. In an inertial frame, the matrices of F read:

F^{\mu\nu} = \begin{bmatrix}
0 & -E_x/c & -E_y/c & -E_z/c \\
E_x/c & 0 & -B_z & B_y \\
E_y/c & B_z & 0 & -B_x \\
E_z/c & -B_y & B_x & 0
\end{bmatrix}

and by lowering indices

F_{\mu\nu} = \begin{bmatrix}
0 & E_x/c & E_y/c & E_z/c \\
-E_x/c & 0 & -B_z & B_y \\
-E_y/c & B_z & 0 & -B_x \\
-E_z/c & -B_y & B_x & 0
\end{bmatrix}

Read more about this topic:  Electromagnetic Tensor

Famous quotes containing the word definition:

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)