Mathematical Model
Suppose that we have a spherical shell of a (linear and isotropic) diamagnetic material with permeability, with inner radius and outer radius . We then put this object in a constant magnetic field:
Since there are no currents in this problem except for possible bound currents on the boundaries of the diamagnetic material, then we can define a magnetic scalar potential that satisfies Laplace's equation:
where
In this particular problem there is azimuthal symmetry so we can write down that the solution to Laplace's equation in spherical coordinates is:
After matching the boundary conditions
at the boundaries (where is a unit vector that is normal to the surface pointing from side 1 to side 2), then we find that the magnetic field inside the cavity in the spherical shell is:
where is an attenuation coefficient that depends on the thickness of the diamagnetic material and the magnetic permeability of the material:
This coefficient describes the effectiveness of this material in shielding the external magnetic field from the cavity that it surrounds. Notice that this coefficient appropriately goes to 1 (no shielding) in the limit that . In the limit that this coefficient goes to 0 (perfect shielding). In the limit that, then the attenuation coefficient takes on the simpler form:
which shows that the magnetic field decreases like .
Read more about this topic: Electromagnetic Shielding
Famous quotes containing the words mathematical and/or model:
“An accurate charting of the American womans progress through history might look more like a corkscrew tilted slightly to one side, its loops inching closer to the line of freedom with the passage of timebut like a mathematical curve approaching infinity, never touching its goal. . . . Each time, the spiral turns her back just short of the finish line.”
—Susan Faludi (20th century)
“One of the most important things we adults can do for young children is to model the kind of person we would like them to be.”
—Carol B. Hillman (20th century)