Electrolysis of Water - Thermodynamics of The Process

Thermodynamics of The Process

Decomposition of pure water into hydrogen and oxygen at standard temperature and pressure is not favorable in thermodynamic terms.

Anode (oxidation): 2 H2O(l) → O2(g) + 4 H+(aq) + 4e− Eo
ox = -1.23 V (Eo
red = 1.23 ))
Cathode (reduction): 2 H+(aq) + 2e− → H2(g) Eo
red = 0.00 V

Thus, the standard potential of the water electrolysis cell is -1.23 V at 25 °C at pH 0 (H+ = 1.0 M). The potential is changed to -0.82 V at 25 °C at pH 7 (H+ = 1.0×10−7 M) based on the Nernst Equation. However, electrolysis will not generally proceed at these voltages, as the electrical input must provide the full amount of enthalpy of the H2-O2 products (286 kJ per mol). This takes the theoretical and real observed threshold of electrolysis to (-)1.48 V.

The negative voltage indicates the Gibbs free energy for electrolysis of water is greater than zero for these reactions. This can be found using the G = -nFE equation from chemical kinetics, where n is the moles of electrons and F is the Faraday constant. The reaction cannot occur without adding necessary energy, usually supplied by an external electrical power source.

Read more about this topic:  Electrolysis Of Water

Famous quotes containing the word process:

    The moralist and the revolutionary are constantly undermining one another. Marx exploded a hundred tons of dynamite beneath the moralist position, and we are still living in the echo of that tremendous crash. But already, somewhere or other, the sappers are at work and fresh dynamite is being tamped in place to blow Marx at the moon. Then Marx, or somebody like him, will come back with yet more dynamite, and so the process continues, to an end we cannot foresee.
    George Orwell (1903–1950)