Electrical Impedance - Complex Voltage and Current

Complex Voltage and Current

In order to simplify calculations, sinusoidal voltage and current waves are commonly represented as complex-valued functions of time denoted as and .

\begin{align} V &= |V|e^{j(\omega t + \phi_V)} \\ I &= |I|e^{j(\omega t + \phi_I)}
\end{align}

Impedance is defined as the ratio of these quantities.

Substituting these into Ohm's law we have


\begin{align} |V| e^{j(\omega t + \phi_V)} &= |I| e^{j(\omega t + \phi_I)} |Z| e^{j\theta} \\ &= |I| |Z| e^{j(\omega t + \phi_I + \theta)}
\end{align}

Noting that this must hold for all, we may equate the magnitudes and phases to obtain

\begin{align} |V| &= |I| |Z| \\ \phi_V &= \phi_I + \theta
\end{align}

The magnitude equation is the familiar Ohm's law applied to the voltage and current amplitudes, while the second equation defines the phase relationship.

Read more about this topic:  Electrical Impedance

Famous quotes containing the words complex and/or current:

    All of life and human relations have become so incomprehensibly complex that, when you think about it, it becomes terrifying and your heart stands still.
    Anton Pavlovich Chekhov (1860–1904)

    A man is a little thing whilst he works by and for himself, but, when he gives voice to the rules of love and justice, is godlike, his word is current in all countries; and all men, though his enemies are made his friends and obey it as their own.
    Ralph Waldo Emerson (1803–1882)