Concept
In a conventional capacitor, energy is stored by the removal of charge carriers, typically electrons, from one metal plate and depositing them on another. This charge separation creates a potential between the two plates, which can be harnessed in an external circuit. The total energy stored in this fashion increases with both the amount of charge stored and the potential between the plates. The amount of charge stored per unit voltage is essentially a function of the size, the distance, and the material properties of the plates and the material in between the plates (the dielectric), while the potential between the plates is limited by the breakdown field strength of the dielectric. The dielectric controls the capacitor's voltage. Optimizing the material leads to higher energy density for a given size of capacitor.
EDLCs do not have a conventional dielectric. Rather than two separate plates separated by an intervening insulator, these capacitors use virtual plates that are in fact two layers of the same substrate. Their electrochemical properties, the so-called "electrical double layer", result in the effective separation of charge despite the vanishingly thin (on the order of nanometers) physical separation of the layers. The lack of need for a bulky layer of dielectric, and the porosity of the material used, permits the packing of plates with much larger surface area into a given volume, resulting in high capacitances in practical-sized packages.
In an electrical double layer, each layer by itself is quite conductive, but the physics at the interface where the layers are effectively in contact means that no significant current can flow between the layers. The double layer can withstand only a low voltage, which means that electric double-layer capacitors rated for higher voltages must be made of matched series-connected individual EDLCs, much like series-connected cells in higher-voltage batteries.
EDLCs have much higher power density than batteries. Power density combines the energy density with the speed at which the energy can be delivered to the load. Batteries, which are based on the movement of charge carriers in a liquid electrolyte, have relatively slow charge and discharge times. Capacitors can be charged or discharged at a rate that is typically limited by current heating of the electrodes.
While existing EDLCs have energy densities that are perhaps 1/10 that of a conventional battery, their power density is generally 10 to 100 times as great. This makes them most suited to an intermediary role between electrochemical batteries and electrostatic capacitors, where neither sustained energy release nor immediate power demands dominate one another.
Read more about this topic: Electric Double-layer Capacitor
Famous quotes containing the word concept:
“By speaking, by thinking, we undertake to clarify things, and that forces us to exacerbate them, dislocate them, schematize them. Every concept is in itself an exaggeration.”
—José Ortega Y Gasset (18831955)
“Revolution as an ideal concept always preserves the essential content of the original thought: sudden and lasting betterment.”
—Johan Huizinga (18721945)
“Every new concept first comes to the mind in a judgment.”
—Charles Sanders Peirce (18391914)