An Ehresmann connection on E is a smooth subbundle H of TE, called the horizontal bundle of the connection, which is complementary to V, in the sense that it defines a direct sum decomposition TE = H⊕V (Kolář, Michor & Slovák 1993). In more detail, the horizontal bundle has the following properties.
- For each point e ∈ E, He is a vector subspace of the tangent space TeE to E at e, called the horizontal subspace of the connection at e.
- He depends smoothly on e.
- For each e ∈ E, He ∩ Ve = {0}.
- Any tangent vector in TeE (for any e∈E) is the sum of a horizontal and vertical component, so that TeE = He + Ve.
In more sophisticated terms, such an assignment of horizontal spaces satisfying these properties corresponds precisely to a smooth section of the jet bundle J1E → E.
Famous quotes containing the word connection:
“We will have to give up the hope that, if we try hard, we somehow will always do right by our children. The connection is imperfect. We will sometimes do wrong.”
—Judith Viorst (20th century)
Related Phrases
Related Words