Edge-of-the-wedge Theorem - The General Case

The General Case

A wedge is a product of a cone with some set.

Let C be an open cone in the real vector space Rn, with vertex at the origin. Let E be an open subset of Rn, called the edge. Write W for the wedge in the complex vector space Cn, and write W' for the opposite wedge . Then the two wedges W and W' meet at the edge E, where we identify E with the product of E with the tip of the cone.

  • Suppose that f is a continuous function on the union that is holomorphic on both the wedges W and W' . Then the edge-of-the-wedge theorem says that f is also holomorphic on E (or more precisely, it can be extended to a holomorphic function on a neighborhood of E).

The conditions for the theorem to be true can be weakened. It is not necessary to assume that f is defined on the whole of the wedges: it is enough to assume that it is defined near the edge. It is also not necessary to assume that f is defined or continuous on the edge: it is sufficient to assume that the functions defined on either of the wedges have the same distributional boundary values on the edge.

Read more about this topic:  Edge-of-the-wedge Theorem

Famous quotes containing the words general and/or case:

    In communist society, where nobody has one exclusive sphere of activity but each can become accomplished in any branch he wishes, society regulates the general production and thus makes it possible for me to do one thing today and another tomorrow, to hunt in the morning, fish in the afternoon, rear cattle in the evening, criticize after dinner, just as I have a mind, without ever becoming hunter, fisherman, shepherd or critic.
    Karl Marx (1818–1883)

    In the case of our main stock of well-worn predicates, I submit that the judgment of projectibility has derived from the habitual projection, rather than the habitual projection from the judgment of projectibility. The reason why only the right predicates happen so luckily to have become well entrenched is just that the well entrenched predicates have thereby become the right ones.
    Nelson Goodman (b. 1906)