Vibrational Energy
The vibrational energy of the molecule can be written in terms of coordinates with respect to the Eckart frame as
Because the Eckart frame is non-inertial, the total kinetic energy comprises also centrifugal and Coriolis energies. These stay out of the present discussion. The vibrational energy is written in terms of the displacement coordinates, which are linearly dependent because they are contaminated by the 6 external modes, which are zero, i.e., the dA's satisfy 6 linear relations. It is possible to write the vibrational energy solely in terms of the internal modes qr (r =1, ..., 3N-6) as we will now show. We write the different modes in terms of the displacements
The parenthesized expressions define a matrix B relating the internal and external modes to the displacements. The matrix B may be partitioned in an internal (3N-6 x 3N) and an external (6 x 3N) part,
We define the matrix M by
and from the relations given in the previous sections follow the matrix relations
and
We define
By using the rules for block matrix multiplication we can show that
where G−1 is of dimension (3N-6 x 3N-6) and N−1 is (6 x 6). The kinetic energy becomes
where we used that the last 6 components of v are zero. This form of the kinetic energy of vibration enters Wilson's GF method. It is of some interest to point out that the potential energy in the harmonic approximation can be written as follows
where H is the Hessian of the potential in the minimum and F, defined by this equation, is the F matrix of the GF method.
Read more about this topic: Eckart Conditions
Famous quotes containing the word energy:
“Just as we are learning to value and conserve the air we breathe, the water we drink, the energy we use, we must learn to value and conserve our capacity for nurture. Otherwise, in the name of human potential we will slowly but surely erode the source of our humanity.”
—Elaine Heffner (20th century)