Eckart Conditions - Separation of External and Internal Coordinates

Separation of External and Internal Coordinates

The N position vectors of the nuclei constitute a 3N dimensional linear space R3N: the configuration space. The Eckart conditions give an orthogonal direct sum decomposition of this space


\mathbf{R}^{3N} = \mathbf{R}_\textrm{ext}\oplus\mathbf{R}_\textrm{int}.

The elements of the 3N-6 dimensional subspace Rint are referred to as internal coordinates, because they are invariant under overall translation and rotation of the molecule and, thus, depend only on the internal (vibrational) motions. The elements of the 6-dimensional subspace Rext are referred to as external coordinates, because they are associated with the overall translation and rotation of the molecule.

To clarify this nomenclature we define first a basis for Rext. To that end we introduce the following 6 vectors (i=1,2,3):


\begin{align}
\vec{s}^A_{i} &\equiv \vec{f}_i \\
\vec{s}^A_{i+3} &\equiv \vec{f}_i \times\vec{R}_A^0 .\\
\end{align}

An orthogonal, unnormalized, basis for Rext is,


\vec{S}_t \equiv \operatorname{row}(\sqrt{M_1}\;\vec{s}^{\,1}_{t}, \ldots, \sqrt{M_N} \;\vec{s}^{\,N}_{t})
\quad\mathrm{for}\quad t=1,\ldots, 6.

A mass-weighted displacement vector can be written as


\vec{D} \equiv \operatorname{col}(\sqrt{M_1}\;\vec{d}^{\,1}, \ldots, \sqrt{M_N}\;\vec{d}^{\,N})
\quad\mathrm{with}\quad
\vec{d}^{\,A} \equiv \vec{\mathbf{F}}\cdot \mathbf{d}_A .

For i=1,2,3,


\vec{S}_i \cdot \vec{D} = \sum_{A=1}^N \; M_A \vec{s}^{\,A}_i \cdot \vec{d}^{\,A}
=\sum_{A=1}^N M_A d_{Ai} = 0,

where the zero follows because of the translational Eckart conditions. For i=4,5,6

\, \vec{S}_i \cdot \vec{D} = \sum_{A=1}^N \; M_A \big(\vec{f}_i \times\vec{R}_A^0\big) \cdot \vec{d}^{\,A}=\vec{f}_i \cdot \sum_{A=1}^N M_A \vec{R}_A^0 \times\vec{d}^A = \sum_{A=1}^N M_A \big( \mathbf{R}_A^0 \times \mathbf{d}_A\big)_i = 0,

where the zero follows because of the rotational Eckart conditions. We conclude that the displacement vector belongs to the orthogonal complement of Rext, so that it is an internal vector.

We obtain a basis for the internal space by defining 3N-6 linearly independent vectors


\vec{Q}_r \equiv \operatorname{row}(\frac{1}{\sqrt{M_1}}\;\vec{q}_r^{\,1}, \ldots, \frac{1}{\sqrt{M_N}}\;\vec{q}_r^{\,N}), \quad\mathrm{for}\quad r=1,\ldots, 3N-6.

The vectors could be Wilson's s-vectors or could be obtained in the harmonic approximation by diagonalizing the Hessian of V. We next introduce internal (vibrational) modes,


q_r \equiv \vec{Q}_r \cdot \vec{D} = \sum_{A=1}^N \vec{q}^A_r \cdot \vec{d}^{\,A}
\quad\mathrm{for}\quad r=1,\ldots, 3N-6.

The physical meaning of qr depends on the vectors . For instance, qr could be a symmetric stretching mode, in which two C—H bonds are simultaneously stretched and contracted.

We already saw that the corresponding external modes are zero because of the Eckart conditions,


s_t \equiv \vec{S}_t \cdot \vec{D} = \sum_{A=1}^N M_A \;\vec{s}^{\,A}_t \cdot \vec{d}^{\,A} = 0
\quad\mathrm{for}\quad t=1,\ldots, 6.

Read more about this topic:  Eckart Conditions

Famous quotes containing the words separation, external and/or internal:

    Just as children, step by step, must separate from their parents, we will have to separate from them. And we will probably suffer...from some degree of separation anxiety: because separation ends sweet symbiosis. Because separation reduces our power and control. Because separation makes us feel less needed, less important. And because separation exposes our children to danger.
    Judith Viorst (20th century)

    Without free, self-respecting, and autonomous citizens there can be no free and independent nations. Without internal peace, that is, peace among citizens and between the citizens and the state, there can be no guarantee of external peace.
    Václav Havel (b. 1936)

    Unlike femininity, relaxed masculinity is at bottom empty, a limp nullity. While the female body is full of internal potentiality, the male is internally barren.... Manhood at the most basic level can be validated and expressed only in action.
    George Gilder (b. 1939)