E. T. Whittaker - Partial Differential Equations

Partial Differential Equations

In the theory of partial differential equations, Whittaker developed a general solution of the Laplace equation in three dimensions and the solution of the wave equation. He developed the electrical potential field as a bi-directional flow of energy (sometimes referred to as alternating currents). Whittaker's pair of papers in 1903 and 1904 indicated that any potential can be analysed by a Fourier-like series of waves, such as a planet's gravitational field point-charge. The superpositions of inward and outward wave pairs produce the "static" fields (or scalar potential). These were harmonically-related. By this conception, the structure of electric potential is created from two opposite, though balanced, parts. Whittaker suggested that gravity possessed a wavelike "undulatory" character.

Read more about this topic:  E. T. Whittaker

Famous quotes containing the words partial and/or differential:

    There is no luck in literary reputation. They who make up the final verdict upon every book are not the partial and noisy readers of the hour when it appears; but a court as of angels, a public not to be bribed, not to be entreated, and not to be overawed, decides upon every man’s title to fame. Only those books come down which deserve to last.
    Ralph Waldo Emerson (1803–1882)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)