E8 Lattice - Symmetry Group

Symmetry Group

The automorphism group (or symmetry group) of a lattice in Rn is defined as the subgroup of the orthogonal group O(n) that preserves the lattice. The symmetry group of the E8 lattice is the Weyl/Coxeter group of type E8. This is the group generated by reflections in the hyperplanes orthogonal to the 240 roots of the lattice. Its order is given by

The E8 Weyl group contains a subgroup of order 128·8! consisting of all permutations of the coordinates and all even sign changes. This subgroup is the Weyl group of type D8. The full E8 Weyl group is generated by this subgroup and the block diagonal matrix H4H4 where H4 is the Hadamard matrix

H_4 = \tfrac{1}{2}\left[\begin{smallmatrix}
1 & 1 & 1 & 1\\
1 & -1 & 1 & -1\\
1 & 1 & -1 & -1\\
1 & -1 & -1 & 1\\
\end{smallmatrix}\right]

Read more about this topic:  E8 Lattice

Famous quotes containing the words symmetry and/or group:

    What makes a regiment of soldiers a more noble object of view than the same mass of mob? Their arms, their dresses, their banners, and the art and artificial symmetry of their position and movements.
    George Gordon Noel Byron (1788–1824)

    Belonging to a group can provide the child with a variety of resources that an individual friendship often cannot—a sense of collective participation, experience with organizational roles, and group support in the enterprise of growing up. Groups also pose for the child some of the most acute problems of social life—of inclusion and exclusion, conformity and independence.
    Zick Rubin (20th century)