Real and Complex Forms
There is a unique complex Lie algebra of type E7, corresponding to a complex group of complex dimension 133. The complex adjoint Lie group E7 of complex dimension 133 can be considered as a simple real Lie group of real dimension 266. This is has fundamental group Z/2Z, has maximal compact subgroup the compact form (see below) of E7, and has an outer automorphism group of order 2 generated by complex conjugation.
As well as the complex Lie group of type E7, there are four real forms of the Lie algebra, and correspondingly four real forms of the group with trivial center (all of which have an algebraic double cover, and three of which have further non-algebraic covers, giving further real forms), all of real dimension 133, as follows:
- The compact form (which is usually the one meant if no other information is given), which is has fundamental group Z/2Z and has trivial outer automorphism group.
- The split form, EV (or E7(7)), which has maximal compact subgroup SU(8)/{±1}, fundamental group cyclic of order 4 and outer automorphism group of order 2.
- EVI (or E7(-5)), which has maximal compact subgroup SU(2)·SO(12)/(center), fundamental group non-cyclic of order 4 and trivial outer automorphism group.
- EVII (or E7(-25)), which has maximal compact subgroup SO(2)·E6/(center), infinite cyclic findamental group and outer automorphism group of order 2.
For a complete list of real forms of simple Lie algebras, see the list of simple Lie groups.
The compact real form of E7 is the isometry group of the 64-dimensional exceptional compact Riemannian symmetric space EVI (in Cartan's classification). It is known informally as the "quateroctonionic projective plane" because it can be built using an algebra that is the tensor product of the quaternions and the octonions, and is also known as a Rosenfeld projective plane, though it does not obey the usual axioms of a projective plane. This can be seen systematically using a construction known as the magic square, due to Hans Freudenthal and Jacques Tits.
The Tits–Koecher construction produces forms of the E7 Lie algebra from Albert algebras, 27-dimensional exceptional Jordan algebras.
Read more about this topic: E7 (mathematics)
Famous quotes containing the words real and, real, complex and/or forms:
“No; we have been as usual asking the wrong question. It does not matter a hoot what the mockingbird on the chimney is singing.... The real and proper question is: Why is it beautiful?”
—Annie Dillard (b. 1945)
“A preschool child does not emerge from your toddler on a given date or birthday. He becomes a child when he ceases to be a wayward, confusing, unpredictable and often balky person-in-the- making, and becomes a comparatively cooperative, eager-and-easy-to-please real human beingat least 60 per cent of the time.”
—Penelope Leach (20th century)
“Young children constantly invent new explanations to account for complex processes. And since their inventions change from week to week, furnishing the correct explanation is not quite so important as conveying a willingness to discuss the subject. Become an askable parent.”
—Ruth Formanek (20th century)
“Painting dissolves the forms at its command, or tends to; it melts them into color. Drawing, on the other hand, goes about resolving forms, giving edge and essence to things. To see shapes clearly, one outlines themwhether on paper or in the mind. Therefore, Michelangelo, a profoundly cultivated man, called drawing the basis of all knowledge whatsoever.”
—Alexander Eliot (b. 1919)