Dupin Cyclide - Cyclides and Separation of Variables

Cyclides and Separation of Variables

Dupin cyclides are a special case of a more general notion of a cyclide, which is a natural extension of the notion of a quadric surface. Whereas a quadric can be described as the zero-set of second order polynomial in Cartesian coordinates (x1,x2,x3), a cyclide is given by the zero-set of a second order polynomial in (x1,x2,x3,r2), where r2=x12+x22+x32. Thus it is a quartic surface in Cartesian coordinates, with an equation of the form:


A r^4 + \sum_{i=1}^3 P_i x_i r^2 + \sum_{i,j=1}^3 Q_{ij} x_i x_j + \sum_{i=1}^3 R_i x_i + B = 0

where Q is a 3x3 matrix, P and R are a 3-dimensional vectors, and A and B are constants.

Families of cyclides give rise to various cyclidic coordinate geometries.

In Maxime BĂ´cher's 1891 dissertation, Ueber die Reihenentwickelungen der Potentialtheorie, it was shown that the Laplace equation in three variables can be solved using separation of variables in 17 conformally distinct quadric and cyclidic coordinate geometries. Many other cyclidic geometries can be obtained by studying R-separation of variables for the Laplace equation.

Read more about this topic:  Dupin Cyclide

Famous quotes containing the words separation and/or variables:

    Like sleep disturbances, some worries at separation can be expected in the second year. If you accept this, then you will avoid reacting to this anxiety as if it’s your fault. A mother who feels guilty will appear anxious to the child, as if to affirm the child’s anxiety. By contrast, a parent who understands that separation anxiety is normal is more likely to react in a way that soothes and reassures the child.
    Cathy Rindner Tempelsman (20th century)

    The variables of quantification, ‘something,’ ‘nothing,’ ‘everything,’ range over our whole ontology, whatever it may be; and we are convicted of a particular ontological presupposition if, and only if, the alleged presuppositum has to be reckoned among the entities over which our variables range in order to render one of our affirmations true.
    Willard Van Orman Quine (b. 1908)