Cyclides and Separation of Variables
Dupin cyclides are a special case of a more general notion of a cyclide, which is a natural extension of the notion of a quadric surface. Whereas a quadric can be described as the zero-set of second order polynomial in Cartesian coordinates (x1,x2,x3), a cyclide is given by the zero-set of a second order polynomial in (x1,x2,x3,r2), where r2=x12+x22+x32. Thus it is a quartic surface in Cartesian coordinates, with an equation of the form:
where Q is a 3x3 matrix, P and R are a 3-dimensional vectors, and A and B are constants.
Families of cyclides give rise to various cyclidic coordinate geometries.
In Maxime BĂ´cher's 1891 dissertation, Ueber die Reihenentwickelungen der Potentialtheorie, it was shown that the Laplace equation in three variables can be solved using separation of variables in 17 conformally distinct quadric and cyclidic coordinate geometries. Many other cyclidic geometries can be obtained by studying R-separation of variables for the Laplace equation.
Read more about this topic: Dupin Cyclide
Famous quotes containing the words separation and/or variables:
“In a separation it is the one who is not really in love who says the more tender things.”
—Marcel Proust (18711922)
“The variables of quantification, something, nothing, everything, range over our whole ontology, whatever it may be; and we are convicted of a particular ontological presupposition if, and only if, the alleged presuppositum has to be reckoned among the entities over which our variables range in order to render one of our affirmations true.”
—Willard Van Orman Quine (b. 1908)