Dual (category Theory) - Formal Definition

Formal Definition

We define the elementary language of category theory as the two-sorted first order language with objects and morphisms as distinct sorts, together with the relations of an object being the source or target of a morphism and a symbol for composing two morphisms.

Let σ be any statement in this language. We form the dual σop as follows:

  1. Interchange each occurrence of "source" in σ with "target".
  2. Interchange the order of composing morphisms. That is, replace each occurrence of with

Informally, these conditions state that the dual of a statement is formed by reversing arrows and compositions.

Duality is the observation that σ is true for some category C if and only if σop is true for Cop.

Read more about this topic:  Dual (category Theory)

Famous quotes containing the words formal and/or definition:

    Then the justice,
    In fair round belly with good capon lined,
    With eyes severe and beard of formal cut,
    Full of wise saws and modern instances;
    And so he plays his part.
    William Shakespeare (1564–1616)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)