In linear algebra, a dual basis is a set of vectors that forms a basis for the dual space of a vector space, and forms a biorthogonal system with the basis for the vector space. For a finite-dimensional vector space V, the dual space V* is isomorphic to V, and for any given set of basis vectors {e1, …, en} of V, there is an associated dual basis {e1, …, en} of V* with the relation
where the superscripts of the dual basis elements are indices. Concretely, we can write vectors in an n-dimensional vector space V as n×1 column matrices and elements of the dual space V* as 1×n row matrices that act as linear functionals by left matrix multiplication.
Read more about Dual Basis: Examples
Famous quotes containing the words dual and/or basis:
“Thee for my recitative,
Thee in the driving storm even as now, the snow, the winter-day
declining,
Thee in thy panoply, thy measurd dual throbbing and thy beat
convulsive,
Thy black cylindric body, golden brass and silvery steel,”
—Walt Whitman (18191892)
“The basis of political economy is non-interference. The only safe rule is found in the self-adjusting meter of demand and supply. Do not legislate. Meddle, and you snap the sinews with your sumptuary laws.”
—Ralph Waldo Emerson (18031882)