Dowling Geometry - The Original Definitions

The Original Definitions

In his first paper (1973a) Dowling defined the rank-n Dowling lattice of the multiplicative group of a finite field F. It is the set of all those subspaces of the vector space F n that are generated by subsets of the set E that consists of vectors with at most two nonzero coordinates. The corresponding Dowling geometry is the set of 1-dimensional vector subspaces generated by the elements of E.

In his second paper (1973b) Dowling gave an intrinsic definition of the rank-n Dowling lattice of any finite group G. Let S be the set {1,...,n}. A G-labelled set (T, α) is a set T together with a function α: T --> G. Two G-labelled sets, (T, α) and (T, β), are equivalent if there is a group element, g, such that β = gα. An equivalence class is denoted . A partial G-partition of S is a set γ = {, ..., } of equivalence classes of G-labelled sets such that B1, ..., Bk are nonempty subsets of S that are pairwise disjoint. (k may equal 0.) A partial G-partition γ is said to be ≤ another one, γ*, if

  • every block of the second is a union of blocks of the first, and
  • for each Bi contained in B*j, αi is equivalent to the restriction of α*j to domain Bi .

This gives a partial ordering of the set of all partial G-partitions of S. The resulting partially ordered set is the Dowling lattice Qn(G).

The definitions are valid even if F or G is infinite, though Dowling mentioned only finite fields and groups.

Read more about this topic:  Dowling Geometry

Famous quotes containing the words original and/or definitions:

    If we remembered everything, we should on most occasions be as ill off as if we remembered nothing. It would take us as long to recall a space of time as it took the original time to elapse, and we should never get ahead with our thinking. All recollected times undergo, accordingly, what M. Ribot calls foreshortening; and this foreshortening is due to the omission of an enormous number of facts which filled them.
    William James (1842–1910)

    What I do not like about our definitions of genius is that there is in them nothing of the day of judgment, nothing of resounding through eternity and nothing of the footsteps of the Almighty.
    —G.C. (Georg Christoph)