Dominated Convergence Theorem - Bounded Convergence Theorem

One corollary to the dominated convergence theorem is the bounded convergence theorem, which states that if ƒ1, ƒ2, ƒ3, … is a sequence of uniformly bounded real-valued measurable functions which converges pointwise on a bounded measure space (S, Σ, μ) (i.e. one in which μ(S) is finite) to a function ƒ, then the limit ƒ is an integrable function and

 \lim_{n\to\infty} \int_S{f_n\,d\mu} = \int_S{f\,d\mu}.

Remark: The pointwise convergence and uniform boundedness of the sequence can be relaxed to hold only μ-almost everywhere, provided the measure space (S, Σ, μ) is complete or ƒ is chosen as a measurable function which agrees μ-almost everywhere with the μ-almost everywhere existing pointwise limit.

Read more about this topic:  Dominated Convergence Theorem

Famous quotes containing the words bounded and/or theorem:

    Me, what’s that after all? An arbitrary limitation of being bounded by the people before and after and on either side. Where they leave off, I begin, and vice versa.
    Russell Hoban (b. 1925)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)