Domain (ring Theory)
In mathematics, especially in the area of abstract algebra known as ring theory, a domain is a ring such that ab = 0 implies that either a = 0 or b = 0. That is, it is a ring which has no left or right zero divisors. (Sometimes such a ring is said to "have the zero-product property.") Some authors require the ring to be nontrivial (that is, it must have more than one element). If the domain has a multiplicative identity (which we may call 1), this is equivalent to saying that 1 ≠ 0 Thus a domain is a nontrivial ring without left or right zero divisors. A commutative domain with 1 ≠ 0 is called an integral domain.
A finite domain is automatically a finite field by Wedderburn's little theorem.
Zero divisors have a topological interpretation, at least in the case of commutative rings: a ring R is an integral domain, if and only if it is reduced and its spectrum Spec R is an irreducible topological space. The first property is often considered to encode some infinitesimal information, whereas the second one is more geometric.
An example: the ring k/(xy), where k is a field, is not a domain, as the images of x and y in this ring are zero divisors. Geometrically, this corresponds to the fact that the spectrum of this ring, which is the union of the lines x = 0 and y = 0, is not irreducible. Indeed, these two lines are its irreducible components.
Read more about Domain (ring Theory): Constructions of Domains, Examples, Group Rings and The Zero Divisor Problem
Famous quotes containing the word domain:
“In the domain of Political Economy, free scientific inquiry meets not merely the same enemies as in all other domains. The peculiar nature of the material it deals with, summons as foes into the field of battle the most violent, mean and malignant passions of the human breast, the Furies of private interest.”
—Karl Marx (18181883)