Mismatch Repair Proteins
DNA mismatch repair protein, C-terminal domain | |||||||||
---|---|---|---|---|---|---|---|---|---|
hpms2-atpgs | |||||||||
Identifiers | |||||||||
Symbol | DNA_mis_repair | ||||||||
Pfam | PF01119 | ||||||||
Pfam clan | CL0329 | ||||||||
InterPro | IPR013507 | ||||||||
PROSITE | PDOC00057 | ||||||||
SCOP | 1bkn | ||||||||
SUPERFAMILY | 1bkn | ||||||||
|
Mismatch repair is a highly conserved process from prokaryotes to eukaryotes. The first evidence for mismatch repair was obtained from S. pneumoniae (the hexA and hexB genes). Subsequent work on E. coli has identified a number of genes that, when mutationally inactivated, cause hypermutable strains. The gene products are therefore called the "Mut" proteins, and are the major active components of the mismatch repair system. Three of these proteins are essential in detecting the mismatch and directing repair machinery to it; MutS, MutH and MutL (MutS is a homologue of HexA and MutL of HexB).
MutS forms a dimer (MutS2) that recognises the mismatched base on the daughter strand and binds the mutated DNA. MutH binds at hemimethylated sites along the daughter DNA, but its action is latent, being activated only upon contact by a MutL dimer (MutL2) which binds the MutS-DNA complex and acts as a mediator between MutS2 and MutH, activating the latter. The DNA is looped out to search for the nearest d(GATC) methylation site to the mismatch, which could be up to 1kb away. Upon activation by the MutS-DNA complex, MutH nicks the daughter strand near the hemimethylated site and recruits a UvrD helicase (DNA Helicase II) to separate the two strands with a specific 3' to 5' polarity. The entire MutSHL complex then slides along the DNA in the direction of the mismatch, liberating the strand to be excised as it goes. An exonuclease trails the complex and digests the ss-DNA tail. The exonuclease recruited is dependent on which side of the mismatch MutH incises the strand – 5’ or 3’. If the nick made by MutH is on the 5’ end of the mismatch, either RecJ or ExoVII (both 5’ to 3’ exonucleases) is used. If however the nick is on the 3’ end of the mismatch, ExoI (a 3' to 5' enzyme) is used.
The entire process ends past the mismatch site - i.e. both the site itself and its surrounding nucleotides are fully excised. The single-stranded gap created by the exonuclease can then be repaired by DNA Polymerase III (assisted by single-strand binding protein), which uses the other strand as a template, and finally sealed by DNA ligase. Dam methylase then rapidly methylates the daughter strand.
Read more about this topic: DNA Mismatch Repair
Famous quotes containing the words repair and/or proteins:
“The office ... make[s] its incumbent a repair man behind a dyke. No sooner is one leak plugged than it is necessary to dash over and stop another that has broken out. There is no end to it.”
—Herbert Hoover (18741964)
“Civilization means food and literature all round. Beefsteaks and fiction magazines for all. First-class proteins for the body, fourth-class love-stories for the spirit.”
—Aldous Huxley (18941963)