A Cartier divisor can be represented by an open cover by affine sets, and a collection of rational functions defined on . The functions must be compatible in this sense: on the intersection of two sets in the cover, the quotient of the corresponding rational functions should be regular and invertible. A Cartier divisor is said to be effective if these can be chosen to be regular functions, and in this case the Cartier divisor defines an associated subvariety of codimension 1 by forming the ideal sheaf generated locally by the .
The notion can be described more conceptually with the function field. For each affine open subset U, define M′(U) to be the total quotient ring of OX(U). Because the affine open subsets form a basis for the topology on X, this defines a presheaf on X. (This is not the same as taking the total quotient ring of OX(U) for arbitrary U, since that does not define a presheaf.) The sheaf MX of rational functions on X is the sheaf associated to the presheaf M′, and the quotient sheaf MX* / OX* is the sheaf of local Cartier divisors.
A Cartier divisor is a global section of the quotient sheaf MX*/OX*. We have the exact sequence, so, applying the global section functor gives the exact sequence .
A Cartier divisor is said to be principal if it is in the range of the morphism, that is, if it is the class of a global rational function.
Read more about this topic: Divisor (algebraic Geometry)