Division (mathematics) - Division in Abstract Algebra

Division in Abstract Algebra

In abstract algebras such as matrix algebras and quaternion algebras, fractions such as are typically defined as or where is presumed an invertible element (i.e., there exists a multiplicative inverse such that where is the multiplicative identity). In an integral domain where such elements may not exist, division can still be performed on equations of the form or by left or right cancellation, respectively. More generally "division" in the sense of "cancellation" can be done in any ring with the aforementioned cancellation properties. If such a ring is finite, then by an application of the pigeonhole principle, every nonzero element of the ring is invertible, so division by any nonzero element is possible in such a ring. To learn about when algebras (in the technical sense) have a division operation, refer to the page on division algebras. In particular Bott periodicity can be used to show that any real normed division algebra must be isomorphic to either the real numbers R, the complex numbers C, the quaternions H, or the octonions O.

Read more about this topic:  Division (mathematics)

Famous quotes containing the words division, abstract and/or algebra:

    Major [William] McKinley visited me. He is on a stumping tour.... I criticized the bloody-shirt course of the canvass. It seems to me to be bad “politics,” and of no use.... It is a stale issue. An increasing number of people are interested in good relations with the South.... Two ways are open to succeed in the South: 1. A division of the white voters. 2. Education of the ignorant. Bloody-shirt utterances prevent division.
    Rutherford Birchard Hayes (1822–1893)

    But the abstract conception
    Of private experience at its greatest intensity
    Becoming universal, which we call “poetry,”
    May be affirmed in verse.
    —T.S. (Thomas Stearns)

    Poetry has become the higher algebra of metaphors.
    José Ortega Y Gasset (1883–1955)