Distributivity Laws For Complete Lattices
For a complete lattice, arbitrary subsets have both infima and suprema and thus infinitary meet and join operations are available. Several extended notions of distributivity can thus be described. For example, for the infinite distributive law, finite meets may distribute over arbitrary joins, i.e.
may hold for all elements x and all subsets S of the lattice. Complete lattices with this property are called frames, locales or complete Heyting algebras. They arise in connection with pointless topology and Stone duality. This distributive law is not equivalent to its dual statement
which defines the class of dual frames.
Now one can go even further and define orders where arbitrary joins distribute over arbitrary meets. Such structures are called completely distributive lattices. However, expressing this requires formulations that are a little more technical. Consider a doubly indexed family {xj,k | j in J, k in K(j)} of elements of a complete lattice, and let F be the set of choice functions f choosing for each index j of J some index f(j) in K(j). A complete lattice is completely distributive if for all such data the following statement holds:
Complete distributivity is again a self-dual property, i.e. dualizing the above statement yields the same class of complete lattices. Completely distributive complete lattices (also called completely distributive lattices for short) are indeed highly special structures. See the article on completely distributive lattices.
Read more about this topic: Distributivity (order Theory)
Famous quotes containing the words laws and/or complete:
“The Laws of Nature are just, but terrible. There is no weak mercy in them. Cause and consequence are inseparable and inevitable. The elements have no forbearance. The fire burns, the water drowns, the air consumes, the earth buries. And perhaps it would be well for our race if the punishment of crimes against the Laws of Man were as inevitable as the punishment of crimes against the Laws of Naturewere Man as unerring in his judgments as Nature.”
—Henry Wadsworth Longfellow (18071882)
“No man, said Birkin, cuts another mans throat unless he wants to cut it, and unless the other man wants it cutting. This is a complete truth. It takes two people to make a murder: a murderer and a murderee.... And a man who is murderable is a man who has in a profound if hidden lust desires to be murdered.”
—D.H. (David Herbert)