Displacement (vector)

Displacement (vector)

A displacement is the shortest distance from the initial to the final position of a point P. Thus, it is the length of an imaginary straight path, typically distinct from the path actually travelled by P. A 'displacement vector' represents the length and direction of that imaginary straight path.

A position vector expresses the position of a point P in space in terms of a displacement from an arbitrary reference point O (typically the origin of a coordinate system). Namely, it indicates both the distance and direction of an imaginary motion along a straight line from the reference position to the actual position of the point.

A displacement may be also described as a 'relative position': the final position of a point (Rf) relative to its initial position (Ri), and a displacement vector can be mathematically defined as the difference between the final and initial position vectors:


\boldsymbol{s}=\boldsymbol{R_f-R_i}=\Delta\boldsymbol{R}

In considering motions of objects over time the instantaneous velocity of the object is the rate of change of the displacement as a function of time. The velocity then is distinct from the instantaneous speed which is the time rate of change of the distance traveled along a specific path. The velocity may be equivalently defined as the time rate of change of the position vector. If one considers a moving initial position, or equivalenty a moving origin (e.g. an initial position or origin which is fixed to a train wagon, which in turn moves with respect to its rail track), the velocity of P (e.g. a point representing the position of a passenger walking on the train) may be referred to as a relative velocity, as opposed to an absolute velocity, which is computed with respect to a point which is considered to be 'fixed in space' (such as, for instance, a point fixed on the floor of the train station).

For motion over a given interval of time, the displacement divided by the length of the time interval defines the average velocity.

Read more about Displacement (vector):  Rigid Body, Derivatives