Discriminant of An Algebraic Number Field - Relative Discriminant

The discriminant defined above is sometimes referred to as the absolute discriminant of K to distinguish it from the relative discriminant ΔK/L of an extension of number fields K/L, which is an ideal in OL. The relative discriminant is defined in a fashion similar to the absolute discriminant, but must take into account that ideals in OL may not be principal and that there may not be an integral basis of K/L. Let {σ1, ..., σn} be the set of embeddings of K into C which are the identity on L. If b1, ..., bn is any basis of K over L, let d(b1, ..., bn) be the square of the determinant of the n by n matrix whose (i,j)-entry is σi(bj). Then, the relative discriminant of K/L is the ideal generated by the d(b1, ..., bn) as {b1, ..., bn} varies over all bases of K/L with the property that biOK for all i. Alternatively, the relative discriminant of K/L is the norm of the different of K/L. When L = Q, the relative discriminant ΔK/Q is the principal ideal of Z generated by the absolute discriminant ΔK . In a tower of fields K/L/F the relative discriminants are related by

where denotes relative norm.

Read more about this topic:  Discriminant Of An Algebraic Number Field

Famous quotes containing the word relative:

    It is an interesting question how far men would retain their relative rank if they were divested of their clothes.
    Henry David Thoreau (1817–1862)