Definition and Properties
A measure defined on the Lebesgue measurable sets of the real line with values in is said to be discrete if there exists a (possibly finite) sequence of numbers
such that
The simplest example of a discrete measure on the real line is the Dirac delta function One has and
More generally, if is a (possibly finite) sequence of real numbers, is a sequence of numbers in of the same length, one can consider the Dirac measures defined by
for any Lebesgue measurable set Then, the measure
is a discrete measure. In fact, one may prove that any discrete measure on the real line has this form for appropriately chosen sequences and
Read more about this topic: Discrete Measure
Famous quotes containing the words definition and/or properties:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)