Discrete Category

In mathematics, especially category theory, a discrete category is a category whose only morphisms are the identity morphisms. It is the simplest kind of category. Specifically a category C is discrete if

homC(X, X) = {idX} for all objects X
homC(X, Y) = ∅ for all objects XY

Since by axioms, there is always the identity morphism between the same object, the above is equivalent to saying

|homC(X, Y)| is 1 when X = Y and 0 when X is not equal to Y.

Clearly, any class of objects defines a discrete category when augmented with identity maps.

Any subcategory of a discrete category is discrete. Also, a category is discrete if and only if all of its subcategories are full.

The limit of any functor from a discrete category into another category is called a product, while the colimit is called a coproduct.

Famous quotes containing the words discrete and/or category:

    One can describe a landscape in many different words and sentences, but one would not normally cut up a picture of a landscape and rearrange it in different patterns in order to describe it in different ways. Because a photograph is not composed of discrete units strung out in a linear row of meaningful pieces, we do not understand it by looking at one element after another in a set sequence. The photograph is understood in one act of seeing; it is perceived in a gestalt.
    Joshua Meyrowitz, U.S. educator, media critic. “The Blurring of Public and Private Behaviors,” No Sense of Place: The Impact of Electronic Media on Social Behavior, Oxford University Press (1985)

    I see no reason for calling my work poetry except that there is no other category in which to put it.
    Marianne Moore (1887–1972)