If A Linear Map Is Finite Dimensional, The Linear Map Is Continuous
Let X and Y be two normed spaces and f a linear map from X to Y. If X is finite-dimensional, choose a base (e1, e2, …, en) in X which may be taken to be unit vectors. Then,
and so by the triangle inequality,
Letting
and using the fact that
for some C>0 which follows from the fact that any two norms on a finite-dimensional space are equivalent, one finds
Thus, f is a bounded linear operator and so is continuous.
If X is infinite-dimensional, this proof will fail as there is no guarantee that the supremum M exists. If Y is the zero space {0}, the only map between X and Y is the zero map which is trivially continuous. In all other cases, when X is infinite dimensional and Y is not the zero space, one can find a discontinuous map from X to Y.
Read more about this topic: Discontinuous Linear Map
Famous quotes containing the words map, finite and/or continuous:
“You can always tell a Midwestern couple in Europe because they will be standing in the middle of a busy intersection looking at a wind-blown map and arguing over which way is west. European cities, with their wandering streets and undisciplined alleys, drive Midwesterners practically insane.”
—Bill Bryson (b. 1951)
“Sisters define their rivalry in terms of competition for the gold cup of parental love. It is never perceived as a cup which runneth over, rather a finite vessel from which the more one sister drinks, the less is left for the others.”
—Elizabeth Fishel (20th century)
“There is no such thing as a life of passion any more than a continuous earthquake, or an eternal fever. Besides, who would ever shave themselves in such a state?”
—George Gordon Noel Byron (17881824)